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CHAPTERl

INTRODUCTION

l.l Liquid Jet Instability

The first theoretical study of the capillary (or surface tension)

instability of a Jet of liquid was carried out by Raylelgh.(18?8). He

analyzed the linear stability of an Invlscld, incompressible, infinitely

long cylindrical jet (with plug flow velocity profile) to a spatially

harmonic disturbance of the Jet surface. Only axlsymmetrlc modeswere

found to be unstable and the wavelength of the most unstable (temporally

growing) modewas determined to be 4_.51 times the undisturbed jet

diameter. .The cutoff wavelength for unstable disturbances, below which

the disturbance will decay in time, was found to be equal to the undis-

turbed jet circumference.

Later, Raylelgh (1892) included the effects of viscosity on the jet

stability. He found that increasing the viscosity had the effect of

increasing the wavelength of the most unstable mode. Since these .stud-

ies, numerous Investlgators have studied the jet breakup process.

Most of the analyses treated the temporal instability problem. Lee

(1974) used a one-dlmenslonal, Invlscld model to Study the Jet breakup

process. Proceeding on the assumption that the axial velocity depends

only on the axial coordinate hearrlved at a simplified set of equations

for momentumand massconservation. The llnearlzed equations thus

obtained were solved in closed form while numerical solutions were

obtained for the nonlinear analysis. Amongthe results obtained were the

time for the jet to breakup (in both the linear and nonlinear cases) and

the volume ratio of the satellite drops to the total drops (in the non-

linear analysis). In the range of parameters studied satellite drops

were always found to occur.



While the temporal theory has received the most attention the actual

jet breakup usually takes place as a result of spatlally growlng distur-

bances. This was recognized by Keller, Rublnowand Tu (1973) who, after

making a transformation to a moving Jet, solved the dispersion relation

obtained by Raylelgh with real frequency while allowing the wavenumber

to be complex. In this way spatially growing waves are obtained.

It was found by Keller et al. that the growth rates for the temporal

and spatial instabilities are the sameonly in the infinite Webernumber

limit. Hencethe results from the temporal theory can be applied as an

approximation to a real jet only for large Webernumbers.

Plmbley (1976), used the one-dlmenslonal model of Lee to treat a

boundary value problem where the unstable disturbances grow with distance

from the Jet exit. He found that Lee's solution (after a transformation

appropriate to a moving Jet) was the Inflnlte Weber number limit of the

solution to his boundary value problem.

Experimental work has necessarily been concerned with spatially

growing disturbances and the Jet is seen to break into drops at some

distance from the nozzle rather than after some period of time. The

results obtained for the growth rates and Jet breakup lengths have gener-

ally been converted for comparison with Raylelgh's (temporal) theory

using the Jet velocity.

Crane, Birch, and McCormack (1964) were _ble to obtain uniformly

spaced and sized drops over a range of disturbance wavelengths which

corresponded to the range predicted by Raylelgh's linear theory. The

growth rates of disturbances of different wavelengths were determined and

found to depart appreciably from the theoretical predictions of Raylelgh.

The finite amplitude of the induced disturbances and consequent nonlinear

effects were the reasons given for the differences. In support of this
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a plot was given which shows that the growth rates in the experiment

breaks away from the linear curve ashort distance from the nozzle exit.

Donnelly and Glaberson (1966) performed experiments on liquid jets

of water and glycerlne-water solutions in air. Disturbances were induced

on the jet by a nearby loudspeaker. Very clear stoboscoplc flash photo-

graphs were taken of the Jet breakup process showing the formation of the

droplets. From these pictures the dispersion curve for the disturbances

was determined. The spatial growth of the disturbances, as shown by the

photographs, was converted to a temporal growth using the frequency of

the forcing and the wavelength of the Induced dlsturbance for comparison

with Chandrasekhar's (1961) linear analysis (which was based on Ray-

lelgh's analysis). The results were found to compare quite favorably.

In light of the studles mentloned above this can probably be traced to

the largevalue of the Je t velocity compared with the capillary velocity

(i.e., large Weber number) and the fact that a linear growth rate was

found to persist to wlth:In one wavelength of the point at which drops

begin to break off.

Using the glycerlne-water solution the effect of viscosity on the

stability of the Jet was examined. It was found that increasing the

viscosity had the effect of decreasing the growth rate, all other things

being equal. These results agreed with Chandrasekhar's to within 20

percent. Small varlatlons.ln the temperature of the jet, causing the

viscosity to vary, was cited as one reason for the discrepancy.

A detailed review of the work done on llquld Jet instability and a

discussion of its applications to nozzle design has been made by McCarthy

and Molloy (1974). Bogy (1979) has given an account of some more recent

work concerning nonlinear effects on the jet breakup; in particular the

formation of satellite drops.

3



1.2 Technological Applications

A number of technologies have evolved which make use of (and helped

to motivate) the scientific studies touched on in the previous section.

Perhaps the best known of these is the ink Jet printer.

In such a printer the drops which are formed due to the Jet insta-

bility are given a charge at the point where they break off from the Jet.

The charged drops pass through an electric field which causes them to be

deflected from thelr orlglnal paths. The deflected drops then strike the

paper and form characters. Details of the worklngs of such a system have

been given by Kuhn and Meyers (1979).

It is easy to see that for such a system to perform properly the jet

breakup and drop formation must be carefully controlled. A particular

problem is theappearance of the small satellite drops which are observed

to occur between the main drops. For this reason a significant effort

has been made to understand this (nonlinear) •phenomenon.

A more recent idea for exploiting the Jet breakup process is in its

use as a heat transfer device, the so,called liquid droplet radiator.

Here a heated Jet of fluid is shot out of a nozzle into a collector a

certain distance downstream. As the Jet travels between the nozzle and

the collector (and breaks into drops) it radiates energy into the space

around it. The fluid is then caught in the collector andclrculated back

through the system. The aim is to develop this type of system for use

in space on satellites or spacecraft.

Some advantages to its use in space over more conventional systems

are the large surface area to volume ratio of the drops, the relative

ease of transporting into space a container of fluid over a network of

pipes and its greater chances of surviving the impact of small particles

floating through space.
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A study of the feasibility of the liquid droplet radiator was made

by Mattlck and Hertzberg (1982). While their results showedpromise,

more work is needed before a practical system can be made.

Wehave cited two exampleswhere the liquid capillary Jet breakup

process can be put to use. These examples illustrate the importance of

understanding and being able to control the Jet breakup.

1.3 Receptivity

It has been found in a numberof problems in which a flow is subject

to incident disturbances (Jones and Morgan (1972), Crlghton and Lepplng-

ton (1974), and Goldsteln (1981)) that elgensolutlons which grow exponen-

tially downstreammust be added to a particular solution in order to

satisfy either edge requirements or causality (or both). The causality

condition requires that the flow not respond to a disturbance before that

•disturbance is imposed. The edge condition which is usually specified

is the Kutta condition that the velocity and pressure be finite at any

edges or other singular points. The appropriateness of the Kutta condl-

tlon has been examined by including viscous effects near a singular

point. A review of work concerned with the Kutta condition has been

given by Crlghton (1985).

In one such study, Rienstra (1981) using someresults from triple

deck theory obtained by Brownand Danlels (1975), showedfor a semi-

infinite vortex sheet with a plane harmonic wave incident on it, that the

solution satisfying the Kutta condition is obtained as the leading order

term in the asymptotic expansion of the outer solution for the corre-

sponding viscous problem. Hencethe imposition of the Kutta condition

in the Invlscld solution is consistent with the detailed structure of

the viscous flow near the edge.
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The elgensolutlons which are introduced into the solutlons In this

way contain terms which involve instability waves. The Kutta condition

then provides a mechanism by which the external disturbances can couple

to instability waves. A similar coupling occurs when causality is

imposed. Since specific constant multiples of the elgensolutlon are

needed to satisfy each of these conditions the amplitude of the insta-

bility waves is thereby specified.

The triggering of instability waves by external disturbances is the

so-called receptivity problem (Morkovln (1969)). The aim of the study

of receptivity is to determine the effectiveness of particular dlstur-

bances in exciting instability waves in a flow. One measure of this

efficiency is the amplitude of the instability wave produced by the dis-

turbance per unit amplitude of the forcing. This quantity is known as

the coupling coefficient. Since the Kutta condition determines the

amplitude of the instability wave we say that the Kutta condltlon com-

pletely specifies the receptivity problem. Similarly the causality con-

dltlon can also be used to specify the receptivity problem. In some

problems these conditions lead to the same result (Crlghton and Lepplng-

ton (1974)) while in others they do not (Goldsteln (1981)). We will be

addressing this question for the problem studied here.

1.4 Scope of the Present Work

The process of the breakup of a liquid Jet begins at the nozzle exit

where spatially growlngcapillary instabilities are excited by the

external disturbance environment. The disturbances maybe those which

are colncldentally present in a facility or those due to a known forcing

which is intentionally imposed on the Jet. Since only the axlsymmetrlc

mode is unstable the Jet deformation is varicose in nature (Raylelgh

(1878)). At the point downstream of the exit where the amplitude of the
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instability waves becomeequal to the original radius of the Jet a drop

of liquid is pinched off from the Jet. Beyondthis point the flow con-

sists of a series of such drops possibly with a set of smaller drops

(called satellite drops) occurlng between the main drops. A simple

schematic of this process is given in figure l,l.

In applications such as those discussed in figure 1.2 it is neces-

sary to be able to control the drop formatlon. In somecases for example

it maybe desired to produce drops of uniform size or to elllmate satel-

lite drops. Control over the breakup process can be accomplished by

imposing an approprlate external disturbance on the flow. Since the Jet

breakup process begins with instability waves the need to understand how

an external disturbance effects the drop formation leads one to a con-

sideration of the receptivity problem for a liquid jet.

In the present work we consider the Invlscld, incompressible,

parallel flow of a liquid Jet emerging into a vacuumfrom a circular

cylindrical nozzle subjected to a small, time harmonic disturbance,

Speclflcally, thls disturbance will take the form of a pulsating axial

pressure gradient. Linearlzed equations for the fluctuations produced

by this perturbation are solved subject to the kinematic and dynamic

boundary conditions on the duct walls and free surface of the jet.

Wewill require thatthls "steady-state" (tlme-harmonlc) solution

be causal. That is, that it candevelop as the long time response of the

flow to a forcing started Instantaneously at someInltlal tlme. Our goal

is to determine when spatially growing instability waves can be excited

by the external disturbance.

It will be seen that there are an infinite numberof solutions to

the problem outlined above. These solutions will differ in their

behavior near the trailing edge of the duct. Out of these we will
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choose the least singular one since this is the one which can be expected

to match to an "inner" solution which takes viscosity into account (van

Dyke (1964)).

We begin in Chapter 2 wlth the general formulatlon of the problem.

Physical variables are defined and the flow geometry illustrated. We

then obtain the llnearlzed differential equations and boundary conditions

for the fluctuating variables.

In Chapter 3 we construct a causal solution to the forced problem

using a method given by Brlggs (1964) A brief description of the method

is given in the appendix.

Under certain conditions the causal solution will involve a term

which grows exponentially downstream. This term represents a Rayle_gh

instability wave. A major purpose for this study is to determine the

amplitude of the instability wave relative to the amplitude of the forc-

ing. This is the so,called "coupling coefflclent".

At the end of Chapter 3 we wrlte down a noncausal particular solu-

tion to the same equations and boundary conditions. We will find that

this solution is singular at the trailing edge of the duct.

In Chapter 4 we construct an elgensolutlon to the problem and use

it to eliminate the singularity in the noncausal particular solution so

that the resultlng solutlon satisfies the Kutta condition _ This solution

again involves instability waves and we can compute the coupling

coefficient. The solution obtained in thl@ way iS compared with the

causal solution.

Finally, in Chapter 5 we discuss the various solutions and summarize

the results obtained.



CHAPTER2

FORMULATIONOFTHEPROBLEM

2.1 Formulation

Weconsider the Invlscld, Incompresslb]e, parallel flow of a liquid

jet emerging from a seml-lnflnlte circular duct of radius a into an

evacuated region. The flow geometry and coordinate system used is shown

in figure 2.1.

A steady base flow (which satisfies the Invlscld equations of motion

for any choice of U(r)

u : (u(r),O)
N

P = C_= constant
(2.1)

is subjected to a small, time harmonic, axlsymmetrlc perturbation.

Assuming the equations can be llnearlzed the fluctuations due to

this disturbance will likewise be harmonic in time and we write them as

-i_t
(u',v',p') = e (u'(x,r), v'(x,r), p'(x,r)) (2.2)

where _ is the frequency of the disturbance.

We write the instantaneous variables as

" |.U = U + U

T

v = v' (2.3)

T
p =p' +C

The instantaneous flow variables are governed by Euler's equation

for an Invlscld fluid

p auT T ]+ (u • v) ~uT : -Vp T
(2.4)

and the incompressible continuity equation

v- uT 0 (2.5)

The kinematic boundary condition on the solid duct wall is



vT(x,a,t) = O; -=< x < 0 (2.6)

O<t<®

The perturbed free surface of the jet can be described by an

equation of the form

r = C(x,t) + a (2.7)

where C is the displacement of the surface from Its undisturbed

position.

On the free surface we have the klnema_tlc boundary condition that

particles on the surface move with the surface_ That is,

D_C
vT(x,C + a,t) = Dt (2.8)

where D/Dt is the convective derivative

D__ a__. T(CDt at ÷ u + a) a__= ax (2.9)

In the absence of viscosity the dynamic condition at the free

surface requires that surface tension forces balance pressure forces.

This condition can be written as

where y

radii of curvature of the surface at position x and time

and Lipshltz (1959) p. 231).

Substituting equation (2.3) into equations (2.4) to (2.6) and

llnearlzlng for small disturbances we get

[+u' +u' _ ]PLat + U(r) _ + dr v, = - ax

F+v' +v,]
p Lat +U(r)+xj =_ +r

V • U' = 0
N

v'(x,a,t) = 0 -= < x < 0

pT(x,C + a,t) + (2.10)

l

is the surface tension and R1 and R2 are the principal

(2.11)

(2.12)

(2.13)

(2.14)

t (Landau
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Since we have assumedthat the disturbances are small, the displace-

ment of the surface from its original position will be small. Wecan

then expand the boundary conditions for x > 0 about r = a for C

<< I. This gives

aC + U(a) a_.{ 0 < x < =
V'(x,a,t) : at ax _(2.15)

for the kinematic condition and

p'(x,a,t) = - y 2 0 < x < = (2.16)

for the dynamic condition when the disturbances are axlsymmetrlc (Lamb

(1945) p. 473). Note that in equation (2..]6) we have set C = x/a which

is the equilibrium condition when there is no surface displacement.

We wlsh to determine the solution to the above problem for the par-

tlcular case of a disturbance corresponding to a time harmonic axial

' -l_t
pressure gradient -Poe where Po is a constant.

Boundary value problems with discontinuous boundary conditions such

as we have here can be solved by the Wiener-Hopf method (Noble (1958),

Roos (1969)). This method makes use of the analytic continuation of

unilateral Fourier transforms into the complex plane.

this method in the present work.

We make use of
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CHAPTER3

FORCEDJET SOLUTION

3.1 Introduction

Since the present formulation is linear we mayobtain the solution

to the forced Jet problem by superposltlon.

In particular, we first consider the flow in a doubly infinite
' -i_t

circular duct subject to an axial pressure gradient -Poe where
!

Po is a constant. The solution to the doubly infinite duct problem

will satisfy the differential equations (2.11) to (2.15), the boundary

condition on the solid duct wall (eq. (2.14))and the condition that at

upstream infinity there is only a time harmonic pulsation of the flow due

to the imposed pressure gradient. The two free surface conditions

(eqs. (2.15) and (2.16)) however cannot be satisfied by this solution.

For this reason we construct another solution to equations (2.11) to

(2.13) which corrects the doubly infinite duct solution for the presence

of the free surface and which vanishes as x _ -_ so that the upstream

boundary condition remains satisfied.

In this way then the solution to the forced seml-lnflnlte jet prob-

lem is obtained.

3.2 Doubly Infinite Circular Duct

We impose a time harmonic axial pressure gradient aPD/ax =

!

-P e-i_t on the flow in a doubly infinite circular duct and seek
0

solutions of the form

uD(x,r,t) = _uD(r) el(kx-_t)

that

solid duct walls is identically satisfied.

(3.1)

Since pD is a function of x and t only equation (2.12) gives

vD(r) _ O. In particular the kinematic boundary condition on the

In order to satisfy
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equation (2.11) we set k = 0 and

the solution to this problem becomes

uD(r) : IP_Ip_ a constant. Hence

pD(x,t) = _P_xe -i_t + poe-i_t

vD(x,t) _ 0 (3.2)

i•pi

uD o -i_t(x,t) = -- e
p_

for all x where P is the level of the pressure fluctuation at
0

x = 0 which will be determined as part of the solution.

From equation (3.2) we can see that the boundary conditions of equa-

tlons (2.15) and (2.16)are not satisfied by this solution. We next

construct a solution to equations (2.11) to (2.13) which will correct

equation (3.2) at the free •surface of the Jet.

3.3 Seml-lnflnlte Jet

In order to correct equations (3.2) for the presence of the free

c

surface we will seek functions _(x,r,t), _(x,t) and p(x,r,t), which

D N D
satisfy equations (2.11) to (2.14), such that u + u and p +

satisfy the satisfy the boundary conditions for x > 0 (eqs. (2.15)

and (2.16)).

Using equation (3.2) in equations (2.57) and (2.16) we write

;(x,a,t) : a_ * U(a) _ _(x,t)

and

(3.3)

p(x,a,t) PoXe-i_t - Poe-i_t (- y • (3.4)

for x > O.

Then the boundary value problem which determines the desired

functions is
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p + U(r) _-_+ U'(r) - _x

p + U(r) _ = - ar

N

V. U =0
N

;(x,a,t) = 0 -= < x < 0

u(x,r,t) --,0 as x -_ - ®

(3.5)

(3.6)

(3.7)

(3.8)

(3.8)

together with equations (3.3) and (3.4). A boundary value problem such

as that above with discontinuous boundary conditions can be solved by

Fourier transforms using the method of Wiener and Hopf.

Since for incompressible flow the absolute level of the pressure+

fluctuations does not vanish at infinity but is felt for all x -® < x

< = we have subtracted it out from the pressure above so that the

Fourier transform of p will exist in the usual sense.

We will seek solutions of the form

-l_t
(u,v,p,C) = (u(x,r), v(x,r), p(x,r), C(x)) e

where the functions u, v, p, and C are sufficiently well behaved at

infinity so that their Fourier transforms in x exist. These are

defined as

etc.

u(k,r) = _ u(x,r)e -I dx

(3.9)

half range Fourier transforms into the complex plane.

transforms are defined as

^ 1 __0u÷(k,r) = _ u(x,r)e -Ikx

14

(3.10)

The Wlener-Hopf technique makes use of the analytic continuation of

These unilateral

dx (3.11)



and

u_(k,r) = u(x,r)e -tkx dx (3.12)

The integral in equation (3.11) can be shown to converge uniformly in any

closed and bounded subset of the upper half plane (Im k > O) and hence

represents an analytic function In the upper half plane (Roos (196g)).

Likewise, equation (3.12) represents a function which is analytic In the

lower half plane. Along the real axis! we have

^ ^ ^

u(k,r) = u+(k,r) + u (k,r) (3.13)

Similar relations can be written down for the other variables.

With the above definitions we Fourier transform equations (3.5)

to (3.7) and obtain

pl(U(r)k - =)u(k,r) + pU'(r)v(k,r) = -lkp(k,r) (3.14)

^

^ dp(k,r)

pi(U(r)k - _)v(k,r) = - dr (3.15)

^ ^

^ v(k,r) dv(k,r)
+ = 0

Iku(k,r) + r dr (3.16)

Applying the half range transforms to the boundary conditions (eqs.

(3.3), (3.4), and (3.8)) and noting that C(O,t) = 0 we can write

^

v+(k,a) = 0 (3.17)

^ ^

v (k,a) = i(U(a)k -_)C (3.18)

I

p (k,a) =- o o ik_12 l ^ YC'(O)i_*)2 + + X - C (k) +- 2_(k - 2_rl(k - it*) - 2_

Ic*X
In equation (3.19) we have added a small amount of damping e

(3.19)

for x > o to the forcing terms so that the Fourier transform will
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exist. The damping factor c* will be set equal to zero at the end

of the analysis.

Equations (3.14) to (3.16) can be combined to arrive at Raylelgh's

equation for _ which becomes

IU(r ) _ _)[Iv,(k,r) + vkr-_)- k2v(k,r r v(k,r) = 0
(3.20)

for an arbitrary base flow profile U(r). In equation (3.20) '

means differentiation with respect to r,

In the followlng we will take

U(r) = Uo - b r ; 0 < b < l
(3.21)

where
o

for a range of profiles from plug flow to Hagen-Polseuille flow.

Note that for this famlly of profiles

r dr

With equations (3.21) and (3.22), equation (3.20) becomes

v"(k r) + _I v'(k,r) _ k2.+ 1 v(k r) = 0
' r

Equation (3.23) is the modified Bessel equation of order one.

U is a constant. Using the parameter b we can get results

(3.22)

(3.23)

Hence we can write

^

v(k,r) = A(k) II(kr) + B(k) Kl(kr) (3.24)

where Il and Kl are the modified Bessel functions of the first

and second kind, respectively.

In order for the solution to be bounded at r = 0 we must have

B(k) = 0 so that

^

v(k,r) = A(k) ll(kr) (3.25)

16



The function A(k) is determlned from the boundary conditions by

the Wiener-Hopf technique.

From equations (3.13), (3.17), and (3.25) we can write

v(k,a) = A(k)Il(ka) = v_(k,a) (3.26)

and

for k along the real axis.

Ii(ka)).

Eliminating

^

v'(k,a) : A(k)kI_(ka) : v_(k,a) + vL(k,a)

I

(In eq. (3.27) Ii(ka) = d/d(ka)

A(k) from equatlons (3.26) and (3.27) gives

(3.27)

^ Il(ka) [v+(k,a)+ v'(k,a)]v_(k,a)-
(3.28)

The boundary conditions (eqs. (3.18) and (3.19)) can be used to

eliminate C to get

^ -P' P
0 0

p_(k,a) = 2_(k - i_*) 2 + 2xl(k - It*)
-kU(a)] v_(k,a) + yC'(O)2_

(3.29)

Writing equation (3.14) at r = a using equation (3.29) and

^

the fact that p(k,a) = p+(k,a)+ p (k,a) along the real axis gives

^ [; P'io[U(a)k - _] u(k,a) + oU'(a) v(k,a) = -Ik +(k,a) - o
2_(k - Ic*) 2

Po ^

÷ 2xi(k - It*) ÷ [_ kU(a)] v (k,a) + (3.30)

Writing equation (3.16) at r = a and using equations (3.26) and

(3.28) we get

k'1(ka)l
Ik u(k,a) = -v_(k,a) + ll(_-_j

(3.31)
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Substituting equations (3.26) and (3.31) tnto equation (3.30) and

rearranging gives

^

x(k)(k - Ic*) 2 v_(k,a) + Ik2(k - I¢*) 2 p,(k,a) -
Ik2p_ k2(k _ I¢*)P °

2_ 2_

Ivk2(k _ I¢*)2C,(0)
2_ (3.32)

where

x(k) = [_ - kU(a)] p[= - kU(a)]2 [} kI_(ka)_+ ll(ka) ] + pU'(a)k[_- kU(a)]

+ yk2( 
\a 2

(3.33)

The key to the success of the Wlener-Hopf technique lles in find-

Ing a factorlzatlon for x(k) such that

x÷(k)
x(k) - X (k) (3.34)

m

where x÷ Is analytic for Im k > 0 and x_ Is analytic for

Im k < O.

Formally the Wlener-Hopf equation can be written as

(k - I¢*)

^

2 v_(k,a) Ik2(k - i¢*)2p+(k,a)

+ x+(k)x (k)
m

(3.36)

Due to the nature of the kernal function x(k), specifically that

It Is meromorphlc, the factorlzatlon (eq. (3.34)) can be performed In a

simple way by making use of the Welerstrass factorlzatlon theorem (Roos

(1969)). As mentloned In the introduction, the solution we are seeking

is the least singular causal solution. In vlew of this we wlll construct
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our factorlzatlons so as to be consistent with the requirements of

causality.

3.4 Factorlzatlon of the Kernal Function and InhomogeneousTerms

3.4.1 Causality

A general method for obtaining a causal response of a system to an

impulsively started forcing has been given by Brlggs (1964). Our concern

here is that our "steady state" (time harmonic) solution be the Iong-tlme

response of the flow which develops in: a causal way from a forcing which

was initiated at sometime, say t = O. The causality condition is that

there is no response before the forcing is "turned on", that is for t < O.

So as not to disrupt the discussion of the analysis a description

of the main points of Brlggs' method is deferred to an appendix. At this

time we merely point out that a causal solution can be obtained by solv-

ing the problem with the frequency _ having a large positive imagi-

nary part. The (causal) solution for real _ is then obtained by

analytic continuation.

The requirement that Im _ be large has no effect on the algebra

leading to equation (3.32). The factorlzatlon of the kernal function,

however, is effected in a very Important way. Wenow proceed to deter-

mine this factorlzatlon.

3.4.2 The Welerstrass Factorlzatlon Formula

The Welerstrass factorlzatlon formula allows us to write an entire

function with simple zeros as an infinite product (Roos (1969) p. 1_4)

Z dldZ{l°g[E(Z)]}Z=O--_-_ ___n) Zlan
E(Z) = E(o) e - e (3.37)

n=l

where the a are the (simple and nonzero) zeros of E(Z) provided
n
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that

O_

(3,38)

for any R > 0 (Conway (1978) p. 170).

If we represent the zeros of E in the upper half plane by

U
and those in the lower half plane by a_ we can

|

rewrite
an

equation (3.37) as

Z[log[_(Z)]]z=o
E(Z) = E(o) e

n=l an n=l

We can then define functions and E such that
÷

_÷(z)
•_(z) =

_(z)

Z)e"a 
a n

(3.39)

(3.40)

where

and

E+(Z) = e¢(Z)_ll

n=l

(z) =
p

!

-ZEl°g[E(Z) ]]z=0
e@ (Z) e

 (Z)naUnez'aUn

(3.41)

(3.42)

In equations (3.41) and (3.42) E+(Z) is analytic and nonzero In the

upper half plane and E (Z) is analytic and nonzero in the lower half

plane, d(Z) is an entire function chosen so that E+ is algebraic

at infinity (Noble (1985) p. 15).
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To arrive at the desired factorlzatlon for our Kernel function we

first write x(k) In dimensionless form and group terms as

=

or

[Q - x(l - b)]
• + I_(x [_ - _(l - b)] 2

Ii(x)

Il(X ) _2(i _ _2) _ Il(X) 2b_[Q - _(I - b)J pu°

132 _ ] a

(3.43)

:
1 Fl (_) PUo

[Q - _(l - b)] F2(_)
a

(3.44)

where

Il(X)Fl(X) : N
X

I_(x_ [Q -X(l - b)] 2 + _2(IB2- _2) Il(X)x

- 2bx[g - x(l - b)]
Il(_)

(3.45)

and

Il(_)

F2(_) - (3.46)

In equations (3.43) to (3.46) we have •defined dimensionless

quantities as Q = _a/U o, x = ka and 82 = paU_/x where _ is

the Strouhal number and 82 is the Weber number and we have used equa-

tlon (3.21) for U(r). Since the imaginary part of _ (and hence of _)

is positive the term II[Q - x(l - b)] is analytic in the lower half

plane. The entire functions Fl and F2 can be factored using the

Weierstrass formula.
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Consider first the function F2. Let 13n be the zeros of F2

(which are the zeros of I1) In the upper half plane. Since F2

N

even function of x the zeros in the lower half plane are simply

All of the zeros of F2 are pure imaginary. If _ = la is pure

imaginary we can rewrite F2 as (Abramowltz and Stegun (1964)).

l.s an

Ii(l_) Jl(_)

F2(l°) = 1_ - (_ (3.4"/)

As _ = we have

Jl(_) ~ os _ -

Since the zeros of the cosine grow llke n as n _ =,"the

(3.48)

relation (eq. (3.38)) is satisfied and equation (3.37) can be applied.

We can easily find that

F2(0) = (3.49)

and

d--_°g[F2(_)_dx
"_=0

=0 (3.50)

By equatlon (3.39) then we can write

l_/1 _//1 _/ "_(1/'n-1/'n)
F2('x ) = _ - + e

n=l

(3.51)

The function

be the zeros of F1

lower half plane.

zeros of Il. In particular they grow llke m as

evaluate the constants needed In equation (3.37) as

Fl(_) can be handled in a similar way. Let _m

In the upper half plane and Cm those In:the

Asymptotically the zeros of Fl becomes Just the

m _ =. We can

Fl(0 ) = _2 (3.52)
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and

d [log[Fl (x) ]]
dx

_=0

b-2

£

Then using equation (3.37)

Combining equations (3.44), (3.5]), and (3.54) we can rewrite

the kernel function as

(3.53)

(3.54)

x(_) =
ml (3.55)

-x----) (1 + _n)e'X(I/SnL-I/Sn)
8n

Now let

and

_m = -Cm and define

N N

Xi m me
m=l

x+(x) = =

-xl(3n

1 +_n e
n=l

N _

e¢(x)

x18 nX_ e

x (x) = In - x(l - b)] n:l
_ _

CaU__o)2gz2 ex(b-2)/C_ m-_] (.I= - _--mme_ ) X/_m

so that

(3.56)

(3.57)
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x(75 =
x+(7)

(3.585

Equations (3.565 to (3.58) then give the des,lred factorlzatlon.

In order to determine the function ¢(_5 in equations (3.56) and

\

(3.57) we need to determine the asymptotic behavior of the infinite

products in these equations. An asymptotic expansion for the infinite

products, with x in the upper half plane, has been given by Noble

(p. 128). We can apply this expansion directly once we know the

asymptotic form of the roots Bn and _m"

From equation (3.48) we can find that

Bn ~ i_(n + no) + 4
(3.59)

as n _ = where no is some integer.

Recall that the zeros of Fl approach those of F2 as x _ =.

The asymptotic form of Cm then is formally the same as equation

(3.59) so we can write

If (3.60)
_m N i_(m + mo) + _--

as m _ = where m is some integer. The difference between the
o

integers m and n will be equal to the number of roots in the
O O

lower half plane which are left over after we identify the set of roots

of Fl which can be put into a one-one correspondence with the roots

of F2. The roots of these two functions were determined numerically

and it was found that each of the roots of F2 could be associated

with a root of Fl with four roots of F1 left over. We will denote

the number of these four roots which lle in the lower half plane by _.

The numerical value of _ may be a function of the particular values of

the physical parameters being considered. Now since there are _ roots of
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Fl

roots of
0

the correct asymptotic form for Cn is

_n ~ l_(n + no) + _-- (I - 41)

With equations (3.59) and (3.61) we can write the asymptotic

In the lower half plane beyond those which can be associated wlth

F2 we must have m = no - _ In equation (3.60). Then

expansion for x÷ as (Noble, p. 128)

{ (X÷('x)- exp $('x')- 7 1 (1 -

1

÷ , log T_ + 4 (1 - 4_) + 1

÷_'+l +X
n=l _n

If we choose

(3.61)

(3.62)

we wlll have that

as x _ _.

x+(7)~ x.

(3.63)

(3.64)

A numerlcal study was made of the "left over" zeros of FI(_) over

a range of the physlcal parameters In order to determine the factor i.

The results of that study are now described.

3.4.3 Numerical Results for the Roots

Of the four roots we are considering here two are real and two are

complex conjugates when Im _ = O. Causality considerations require

that we determine the position of these roots when Im _ becomes

large. The movement of the roots of Fl(X) as Im _ Is Increased from

zero was studied numerically for a number of combinations of Strouhal

number, Weber number and mean velocity profile.
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For each mean profile there is a range of Weber number and Strouhal

number for which the four roots move as shown in figure 3.1. This sketch

shows the movement of the roots as Im _ is varied. The important

thing to note about this figure is the movement of the complex root which

lles in the lower half plane •when Im _ = O. For fixed profile and

Weber number there is a range of Re _ (i.e., the Strouhal number) for

which this root crosses the real axis and moves into the upper half plane

as Im _ is increased as shown in figure 3._.. This crossing of the

real axis of a complex root is the criterion for the existence of spa-

tially growing waves in the causal solution (Brlggs (1964)). The range

of Re _ for which this crossing occurs then corresponds to the

Strouhal number range over which the flow supports instability waves.

Outside of this range the flow is stable. For a given mean profile and

Weber number the range of Strouhal number over which the flow supports

instability waves can be determined by finding the range of Re (_)

over which this root crosses the real axis. The locus of thls root as a

function of (complex) Strouhal number was determined for a number of

combinations of mean profile and Weber number. The results of the com-

putations are shown in figures 3.2 to 3.19.

For the plug flow profile (b = O) the cutoff Strouhal number (above

which the flow is stable) was found to be equal to one independent of the

value of the Weber number in the range computed. Results obtained for

other profiles (b _ O) indicate that for fixed b the range of Strouhal

number over which instability waves exist decreases with increasing Weber

number (see figs. 3.9 to 3.14 and 3.15 to 3.19). Additionally, for a

given Weber numer, this Strouhal number range was found to decrease

quite rapidly with increasing b. In fact when the profile parameter
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was increased beyond 0.5 no roots were found which correspond to insta-

bility waves for the range of Webernumberreported here.

In the course of studying the movementof these roots another situ-

ation was discovered. For the plug profile when B2 < 5 the roots move

in the way illustrated in figure 3.20. Notice that in this situation

two roots which appear in opposite half planes when Im _ >> l swap

their positions for Im _ = 0 when the Strouhal number is increased

beyond a certain value. Using the criterion of Brlggs (1964) this indi-

cates that the flow is absolutely unstable for these Weber numbers. That

is, disturbances grow in time at every point in space. When the flow is

absolutely unstable it is no longer appropriate to consider spatially

growing instability waves.

For the purposes of this study, since we are interested in the gen-

eration of spatially growing Raylelgh instabilities, we will confine our

attention to the parameter ranges for which the flow is convectlvely

unstable. In this range the roots move as in figure 3.1 so that _ = 2.

With the position of the roots of Fl thus determined the factor-

Izat_on of the kernal function is complete. It remains only to factor

the Inhomogeneous terms. This is particularly simple in this case.

From equation (3.36) we can see that the Inhomogeneous terms (those

on the right) are by inspection "plus" functions. We can now proceed to

solve the Wiener-Hopf equation (eq. (3.36)).

3.5 Solution of the Wiener-Hopf Equation

"Finding the solution" in problems of this type consists of finding

^ ^

expressions for both v and p÷. This is accomplished by using

analytic continuation arguments along with Liouville's theorem on entire

functions.
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Webegin by rewriting equation (3.36) as

(k,a)(k - Ic*)
w

x (k)

2 _ik2(k _ ic,)2_+(k,a)

: x+(k)

Ik2p_ k2(k _ Ic*)P °
+

2_x+(k) 2_x+(k)

Iyk2(k - ic*)2C'(O) (3.65)
2_x+(k)

and recalling that thls equation holds along the real k axis.

The term on the left is analytic In the lower half plane while the

one on the right Is analytic in the upper half plane. Since the two are

equal along the real axis we can consider the former to be the analytic

continuation of the latter into the lower half plane. In this way we

can construct an entire function E(k) as

(k,a)(k - Ic*)2 - Ik2(k - Ic*)2P (k,a) k21p '
- + 0

E(k) = x_(k) x+(k) += 2_x+(k)

k2(k _ Ic*)P ° Ixk2(k _ Ic*)2C'(O)
B

2_x+(k) 2_x+(k)
(3.66)

where E(k) is equal to the "minus" functions for all k in the lower

half plane and the "plus" functions for all k in the upper half plane.

Different choices for E(k) wlll lead to different solutions to the

problem. The least singular solution will correspond to the most rapid

decay of the Fourier amplitudes (and hence of E(k)) as k _ =. In

order for the Fourier transform to exist the Fourler amplitudes must be

algebraic at infinity so that E(k) is at most algebraic at infinity.

Using thls fact and an extended version of the usual Liouville theorem

(Noble (p. 6)) we can determine that E(k) must be a polynomial and we

write

E(k) = a" + bk + ... + qk q (3.67)

28



where q is a flnlte integer. Combining equations (3.66) and (3.6?) we

have

V_ (k,a) : x kl[ ](k - Ic*) 2 a + _k + _k 2 + _k 3 + + qk q

for Im k < 0 and

(3.6B)

P+(k,a) =

for Im k > 0.

Po' IPo YC(o)' Ix+(k)

2_(k Ic*) 2 + - "2_(k i_*) 2_ +_ _ k2(k_i¢*) 2

..[_ + _k + _k2 + _k3 + ... + qkq.]

N

It remains to find the coefficients a, b, etc.

(3.69)

Our choice for the coefficients of the polynomial E(k) will be

dictated by the following requirements. These are: (1) that the solu-

tion satisfy the boundary condition at upstream infinity (2) that
+

is analytic in the upper half plane, and (3) that we obtain the least

/

slngular solutlon.

The upstream boundary condition is that the correction to the doubly

infinite duct solution (which is what we are constructing here) vanish

as x _ -= so that we are left with only the imposed forcing (which is

given by eq. (3.2)) in the complete solution. The behavior of the pres-

sure as x _ -= is determined by the behavior of P as k 70 (Roos,
+

(1969), p. 151). In order for P to vanish as x7 -= the residue of

at k = 0 must be zero. This is accomplished by setting _ = _ = 0.
÷

we have defined the function ;+ to be analytic in theSince

upper half plane we must retain enogh coefficients, and choose their

values, so that the pole at k = Ic* in equation (3.69) (which lles

in the upper half plane) will cancel out. If we expand equation (3.69)

near k = Ic* the singular part becomes
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1 ,)2 ,)3(k I,*) 2 (I,*) 2 (I, , + d(i, + .

l x÷(i_*)

+ (k - 1,*)

• (_(i,*) 2 + d(i,*) 3
\

IPo Ix+(Ic*) (
(IE*) 2

and the double pole at

]I °o. + _(1,*) q +

- (it,)4 )

+ q(i,*) q) "

.

k = Ic* will vanish if we choose

!

IP o

2",'X+( I c*) '
(3.70)

and the overall level of the pressure fluctuations as

! !

-IPo x+ (It*)

Po = x+(Ic*)
(3.71)

the remaining contributions vanishing as c* _ O.

The least singular solution (near x = O) will correspond to the

one whose Fourier amplitude decays most rapidly as k _ =. Hence

the least singular solutlon will be obtained by choosing the order of

the polynomial E(k) to be as low as possible while accommodating the

consistency condition (that P is analytic In the upper half plane)
+

and the boundary conditions. Since these conditions have already been

satlslfled we will set the remalnlng coefflclents to zero. Then the

least singular solution becomes

IP' k2x_(k)

(k,a) o (3.72)
-- -- 2

2_X+(lc*) (k - It*)
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and

^

P+(k,a) :

I

P
0

2_(k - I(*) 2 I x+(k) 1
l - -- +

x+(Ic*)

POX+( I(*) x ¢ (0)
+ - 2_ (3.73)

2xx+(Ic*)(k - i(*)

With the boundary values of the solutions thus obtained we can now

write down the equations for the flow!varlables. From equations (3.25),

(3.26), and (3.72) we have for the upwash velocity

Il(kr)
eIkx dk (3.74)

v(x,r) - ll(ka)2_x+(o) x_(k)

The streamwlse velocity can then be determined from the continuity equa-

tlon (eq. (3.16)) as

u(x'r) = o x (k) Ii(kr) elkX
2_x+(o) I (ka) kr + l_(kr dk (3.75)

and the pressure from the momentum equation (eq. (3.14))

pIo__ 1p(x,r) - I_(a) P[_ kU(r)]2xx+(o) k kr, + I,(kr)

7

+ pU'(r)ll(kr) _ eIkx dk (3.76)

The solutions of equations (3 74) to (3.76) are valid only when Im

is sufficiently large. The "steady state" solutions for _ real

are obtained by analytically continuing these solutions to the real

axis. From the discussion of the last section we know that if we are in

the range of Strouhal number for which instability waves exist and the

flow is convectlvely unstable one of the poles of x , we will call

it _, moves from the upper half plane into the lower half plane as
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Im _ _ O. In the analytic continuation of our solutions then we must

deform the integration contour in the k plane (which is originally the

real axis) around this pole. Wecan evaluate the contribution of this

pole using the residue theorem. For the upwashvelocity this becomes

IP' I = Il(kr) eIkx dkv(x,r) - o
2_X+(O) x_(k) ll(ka)

--GO

l

o l

x+(o) II(:a) k_:llm[(k- :)x_(k)] ll(:r)e

i_X
(3.77)

Or, making use of the factorlzatlon of the kernal function in the second

term

IP' C ll(kr) Ikx
v(x,r) = o

2_X+(O) J.= x_(k) ll(ka) e dk -

P' x+(:) ]

0

x+(O) ll(_a)x'(=) ll(_r)

Equation (3.78) is valid for _ real.

eio_'x (3.78)

Since _ is in the lower half plane when _ is real the second

term on the right in equation (3.78) grows exponentially in x. This

)//term represents a Raylelgh instability wave with amplitude -Pox+(a

Ii(aa)x'(a)x+(O ) . We can think of this instability wave as being triggered

at the trailing edge of the duct by the external forcing. The ratio of

the amplitude of the instability wave to that of the forcing is the so-

called coupling coefficient which in this case becomes

-x+(:)
C = (3.79)
o x+(o)II(:a)x'(_)

The magnitude of the coupling coefficient is a measure of the effective-

ness of the external disturbance in generating instability waves.
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Using the factorlzatlon obtained earlier we can computenumerical

values for the coupling coefficient over a range of the physical para-

meters. Wedo thls In the next section.

Before proceeding to the numerical calculation of the coupling coef-

flclent we wlsh to point out one further feature of thls problem.

Wecould have constructed a particular solution to equations (3.5)

to (3.7) and boundary conditions (eqs. (3.3), (3.4) and (3.8)) without

regard to causality. Thls solution would be formally the sameas the one

constructed here up to equation (3.?6), The definitions of the split

functions x+ and x_, however, would be different. In thls case the

correct half plane for the real roots Is determlned by allowing _ to have

a small positive imaginary part. Thls small imaginary part will leave the

pole k =

of x (k).

In the lower half plane. Hence it wlll not appear as a pole

Wecan obtain this particular solution from the causal solu-

tlon (with Im _ large) by replacing x+(k) by (k - :)x+(k).

replacement In equation (3.7i2) (with c* = o) gives

Making thls

I

-IP
0

vP (k,a) - (k - _) x_ (k) (3.80)
- 2_x+(O)_

for the upwash velocity.

From equation (3.33) ands(3.64) we can determine that

k2
x+ as k -7= for

k-lx_ N (for b _ I).

by the behavior of _P

k3x ~ and

b_ I. Then by equation (3.34) we must have that

The behavior of vp near x = 0 is determined

as k _ _ (Roos (1969) p. ]51). Inserting

the asymptotic behavior of x_ Into equation (3.80) we flnd that

vP(k,a) ~ k° as k 7

from which It follows (Llghtlll) that

vP(x,a) N a(x) as x _ 0+
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where _(x) is the Dirac delta function. Hence Vp has a delta-

function llke singularity at the trailing edge of the duct. In the next

chapter we will construct an elgensolutlon to equations (2.11) to (2.16)
P

which has the samesingularity at the edge as v It will be shown

that the difference between the causal solution and the singular partlc-

ular solution Is a constant multiple of this singular elgensolutlon and

that the constant is Just equal to that required to cancel the edge

singularity in the particular solution and hence satisfy the Kutta con-

dltlon. These aspects will be discussed in more detail in the next

chapter.

3.6 The Coupling Coefficient

For the numerical computations we will return to dimensionless

variables. Wemake the coupling coefficient dimensionless as

PUo -x+(_) /PaUo/C - a Co = (3.81)

x+(o) Il(_)x' (_)

where x+ is given by Its infinite product representation (eq. (3.56)),

x is given by equation (3.43) and ' now means d/d_.

We can rewrite the infinite products In equation (3.56) In a form

more convenient for computations by using some results given by Noble

(p. 128). Followlng Noble we compare the asymptotic behavior of the

infinite products In equatlon (3.56) with that of

_ll x I -_/aln -c_/a l

3(x) = n=l + aln + bl e = e la bl IIF _---+ --+l al

(3.82)

where aI and bI are the coefficients in the asymptotic form of

the roots, and c is Euler's constant (c = 0.57?2 . . .).
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If we divide the infinite products In equatlon (3.56) by the lnfln-

Ite product representation of

bI we can write

J and insert the values for aI and

n=l

_n +

Cn

n=l

_n - ixn - _- (l - )

+ 1_ (3.83)
i_n + _-- (l - 4_) + _ ]

and

xD+(_)

jD(_)

: (I/i_n-1/Bn) _n + _-
e

gn

n=l

Bn - l_n -

- -i_ "
i_n+_-+x

(3.84)

where the superscripts N and D are used to dlstlngulsh between the

infinite products in the numeratom and denominator, respectively.

From the gamma function representation of J we have

-cx/l_ FI45-- _)
jN(_) = e

rE +
(3.85)

jD(_) = e-CX/le (3.86)

From the functional equation for the gamma function

(3.87)
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and

(3.88)

Combining equations (3.56) (3.63) and (3.82) to (3.88) we can write a

new expression of x+ as

In_ ÷ _-_ (l -

Cn

x+('x) = = =

n___l _n_ +

( ) ( )5 ; 5
_-_ + _- 1 ... _-_ + _- _

_n l_n - _-- (I -4_)

ilt
i.n + _-- (I - 4_) +

n=l

_n - l.nl_- 14 1
l_n +_--+

(3.89)

The roots _n and 8n approach their asymptotic values fairly

quickly. Expressing the terms In the infinite products so that they

occur as differences between the roots and their asymptotic values

reduces the number of arithmetic operations needed before the products

can be considered converged. Not onlyls the computation time reduced

by this procedure but the error due to roundoff which would accumulate

after many operations Is minimized.

We can use equations (3.44) to (3.46) to write

x'(_):

×' (_) as

[o-_-_ _.
(3.90)
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by noting that Fl(_) = O.

From equation (3.56) we see that x+(o) = I.

Combining equations (3.81), (3.89), and (3.90) along with the fact

that _ = 2 to wrlte the final computational formula for the coupling

coefficient as

16 [_ - _(I - b)l (_
C : _- F_(_)_ " _

n=l u

-_ n_ +
8n

n=l

n=l

8_nn-_ i_ni_-14 1i_n +T-+

(3.91)

We now give the results of the numerical evaluation of the coupling

coefficient using equation (3.91).

3.7 Numerical Results

Numerical values for the magnitude of the coupling coefficient were

computed for the mean velocity profiles considered in section 3.4.3 and

a number of Weber numbers over the range of Strouhal numbers for which

spatially growing waves were found to exist (see section 3.4.3).

Figures 3.21 to 3.23 show the results of the computations. Each

curve in these plots show the variation of the magnitude of the coupling

coefficient with Strouhal number for a fixed Weber number.
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For the plug profile (fig. 3.21) ICl is nearly independent of

82 over the range shown while for the other mean profiles (figs. 3.21

and 3.23) ICI increases with increasing Weber number.

According to these results, for a given profile and Weber number,

the greatest coupling generally occurs for smaller Strouhal numbers

although there are curves (b = 0.4, 82 = lO most notably) for which

ICi reaches a minimum and then begins to increase as the cutoff

Strouhal number is approached. By superposlng these figures we can

determine the effect of the mean velocity profile on ICl. When this

is done it can be seen that, for fixed Strouhal and Weber numbers, the

magnitude of the coupling coefficient increases with increasing b. This

result indicates that a greater coupling could be achieved in practice

if a longer nozzle were used since then the mean profile would be more

fully developed. Along with this increase of the coupling coefficient

however comes a decrease in the growth rate of the instability wave (see

section 3.4.3).
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CHAPTER4

THEEIGENSOLUTION

4.1 Introduction

In the previous chapter, in addition to obtaining a causal solution,

we obtained a noncausal, slngular partlcular solution to the boundary

value problem in section 3.6. Wewill show that the singularity in this

particular solution can be removedby adding the correct multiple of an

elgensolutlon which has the sameorder of singularity. The resulting non-

singular solution is said to satisfy the Kutta condition. It remains to

be determined howeverwhether or not the solution obtained using the Kutta

condition is causal.

Wewill construct the necessary elgensolutlon in this chapter. Once

this has been done the elgensolutlon will be combined wlth the particular

solution (eq. (3.80)) in such away as to eliminate the singularity. The

nonslngular solution thus obtained will then be comparedwith the causal

solution obtained in Chapter 3. As in the previous chapter we construct

the elgensolutlon by superposltlon.

First we consider the flow of a doubly infinite jet of fluid in the

absence of any duct. That is, we find a solution to equations (2.11) to

(2.13) subject to free surface boundary conditions for all x, -_ < x <

_. Since this solution (which is a Raylelgh instability wave) will not

satisfy the boundary condition on the solid duct wall, a solution is con-

structed which cancels the normal velocity on the boundary for x < O.

The sumof these two solutions then is the desired elgensolutlon.

4.2 Doubly Infinite Jet

In this section we seek solutions to equations (2.1i) to (2.13) sub-

ject to the free surface boundary conditions (eqs. (2.15) and (2.16)) for

all x, -_ < x < _. Welook for solutions of the form
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(ul,vl,pI,cI) = (_l(r),_I(r),_l(r)),_l)el:(x-ct) (4.1)

where :c = _ with _ and c complex. Substituting equation (4.1)

into the equations of motion we obtain the following equations for the

"^" functions

pi(U(r) - c) ul(r) + pvI(r) dU(r) l:_l(r)
dr

(4.2)

pi:(U(r) - c) vl(r) = -pI'(r) (4.3)

and

l d
l:uI(r) + r d-r [rvI(r)] = 0 (4.4)

These equations are formally identical to equations (3.14) to

(3.16) of Chapter 3 (in thls case the functions are the normal mode

solutions whereas before they were Fourier transforms). They can be

manipulated in the same way to obtaln the Raylelgh equation for GI as

^I" (U(r) - c) _I'(r )(u(r)- c)v (r)+
r

_- r _rr + (U(r) c) 2 1 (4.5)

Substituting the family of velocity profiles we are considering

U(r) = U° - b

I

^I
we can again arrive at the modified Bessel equation for v

(4.6)

_l"(r) +-I _l'(r) _ (2 + ___l GI(r) = 0 (4.7)
r k

After applying a boundedness condition on the solution at r = 0 we

obtain

GI(r) = AI l(:r) (4.8)

where A is an arbitrary constant.
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The boundary conditions (eqs. (2.15) and (2.16)) determine the

values of _ for which nontrlvlal solutions exist, that is the

elgenvalues. Using equation (4.1) in equations (2.15) and (2.16) we

obtain

vI(a) = le _I(a)(U(a) - c) (4.9)

and

Eliminating

pI(a) = Y _I(a) I_2 - _-_)

_I(a) from these two equations we can write

(4.10)

vI(a) pl(a)

i_(U(a) - c) Y _

Another relation between vI(a)

Inatlng _I

(4.11)

and pI(a) can be obtained by ellm-

between equations (4.2) and (4.4) and evaluating at r = a.

Upon substituting for the mean flow profile (eq. (4.6)) this relation

becomes

Oo<b>c)+ (Uo(l - b) - c) vI'(aa

We can now combine equations (4.11) and (4.12) along with the
(4.12)

solution (eq. (4.8)) to obtain the elgenvalue relation

3
ll(:a) aL 1

[_ - Uo(l - b):] = y :a( 2a2 _ l)

For the case

_ - Uo(b + I)__a ll(_a) + [_ _ Uo(l - b)_] l_(=a

b = 0 this reduces to

(4.13)

11( a) aL3 I F Uo:
[_- Uo:] - Y _a(:2a 2 - l) L :a ll(:a) + (_ - Uo:) l_(:a_

which agrees with the result obtained by Keller et al. (1973).

(4.14)
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Equations (4.8) and (4.13) give the elgenfunctlons and elgenvalues

of the normal mode solution for the doubly infinite jet. We will now

construct a solution which corrects the normal mode solution for the

presence of the seml-lnflnlte duct.

4.3 Seml-lnflnlte Jet

The solution constructed in section 4.2 has a nonzero normal veloc-

ity on the boundary for x < O. To correct for the existence of the

rigid duct walls we must superpose on this solution one which cancels the

normal velocity on the boundary for

Specifically, we seek functions

x<O.

u, v, p and _ which satisfy

equations (2.11) to (2.13), boundary condltlons (eqs. (2.15) and (2.16))

for x > 0 and the following boundary conditions for x < 0

v(x,a,t) = -AIl(:a) el(:x-_t)

The boundary condition eq. (4.18) ensures that the normal velocity

at r = a is equal and opposite to that in the solution of section 4.2.

Applying the unilateral Fourier transform (eq. (3.11))to the boundary

condition (eq. (4.18)) we get

V+(k,a) -
iAI1(:a)

2x(: - k)

(4.18)

(4.19)

As in Chapter 3 we will assume time harmonic solutions which can be

Fourier transformed in x and use the Wiener-Hopf technique.

The same manipulations leading to the Wiener-Hopf equation in Chap-

ter 3 can be performed here as well. The only difference being in the

Inhomogeneous terms in the Welner-Hopf equation (due to the different

boundary conditions for the two problems). Without repeating the algebra

here we simply write down the Wiener-Hopf eq_atlon for this problem as
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x(k) V_(k,a) + Ik2p
÷ = - x(k) [_ , kU(a)]

IAIl(_a)

2_(: - k)

Iyk2C'(O)

- 2_ (4.20)

In constructing the (singular) elgensolutlon, as in the particular

solution, the frequency _ is allowed to have a small positive imaginary

part. The factorlzatlon of x(k) when Im

the factorlzatlon when Im _ is large by

is small is related to

x+(k) = x+(k),(k - :) (4.21)

where x+ are the split functions obtained in Chapter 3 with

N

Using the functions x+ here we can rewrite equation (4.19) as

Im _ >> I.

^

V_(k,a) + Ik_P+(k,a) : _ [ 1
x_(k) x+(k) x_(k)

Yk2(k2 - lla2) l"

x+(k)[_ kU(a)]]
!

IAll(:a) Iyk2C (0)
- (4.22)

2_ (: - k) 2_x+(k)

The last term on the right hand side of equation (4.22) is already

a "plus" function. The remaining Inhomogeneous terms must be factored

by subtracting out poles. For thlspurpose we define

G(k) = 2_ x_(k)(: - k) x+(k)[_- kU(a)](:- k)

and construct functions G and G so that
+

G(k) = (G+(k) + G_(k)) (4.24)

where G+ is analytic in the upper half k plane and G_ is analytic

in the lower half plane. By inspecting equation (4.23) we can see that

the desired functions are
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G+(k) =
-IAll(:a)

2_(_- k)x_(_)

IAll(:a) yk2(k 2 _ I/a 2) +

(_- k)[(_- kU(a)]x+(k)2_

(_ 2 _ 2
Y(U--_) ((U(a)l _ I/a2)IAll (_a)

÷

G- U(a) X+(U--_)[(_ - kU(a)]2_

-IAI l(_a) IAlI(:a)
G_(k) : +

2_(_ - k)x_(k) 2_(_ - k)x_(:)

2 _ 2
Y(U(--_) ({U--_) -I/a2)iAll(:a)

Substituting equations (4.25) and (4.26) into equation (4.24) and

rearranging we get

(4.25)

(4.26)

V_(k,a) IAIl(_a) IAll(_a)

x_(k) 2_(_ - k)x_(k) 2_(_ - k)x_(_)

2(( (_ _2 /a2)iAll(_a)

- U(a) x+ _ [(_ - kU(a)]

yk2(k 2 _ I/a 2) IAIl(:a)

(_ - k)[_ - kU(a)]x+(k)2_

-IK2p+(k,a) -IAll (_a)
: ÷

x+(k) 2x(_- k)x_(:)

y - i/a 2 IAll(_a )

- U(a) x+ [_- kU(a)]2_

2 '

_ 1yk ¢ (o) _- E(k)

2_x+(k)

(4.27)

where E(k) is an entire function which, by the same arguments used in

Chapter 3, is a polynomial.

Replacing E(k) with a polynomial and returning to the split

functions x+ by equation (4.21) we can write the solution to the

Wiener-Hopf equation as
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F
L

(k,a) (k (_)x_(k) a' + k + q] IAl I(_a)+ q'k 2_(_ - k)

IAIl(ea)x'(:)x_(k)

2_x+(:)

2 _ 2
IAII(_a)Y(U--_) ((U--_) -I/a2)

_ 2_

(k - :)x_(k)

[_ - kU(a)]

(4.28)

and

P,(k,a) :
i(k - :)x+(k) , N,

k2 " + b .k

AIl(:a)Yk2(k 2 - I/a2)

2xk2(: - k)[_ - kU(a)]

I

+ . + _,kq ] _ AIl(:a)x (:)x+(k)

2_x+(_)k 2

2 _ /a2) (k _)x+(k)AIl(:a)y(u-_a))2C U--_> l -

2

x+ - 2_[o - kU(a)

I

YC (0) (4.29)
2_

As in Chapter 3 we will choose the coefficients _', _', etc. so

A

that (1) P+ is analytic in the upper half plane, (2) there are no

poles at k = 0, and (3) we obtain the least singular solution near

X = 0.

The singular part of _ near k = 0 can be found to be

i

1 - i:x+(0)a - + - i:x+(0)b
k2 2_x+(:) i_

,( , )+ i_ - _x+(0) ÷ x+(0)

I !

AIl(:a)x (:)x+(0)

2_x+(:)

AC [_( ' X+(0)) :X+(0) )I
- 2 i_ -_X+(0) + - U(a J

(4.30)
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In order to eliminate the pole at k = 0 we must set

I

(4.31)

and

where

-' -i la' AC AC:U(a)] (4.32)

C = (4.33)

i _ 2 _ 2
II(:a)Y {U--_)((U-_>- I/a2)

2

2xx+ (U_a))_ - U_a))

This choice for a and b ensures that the pressure decays

A

at upstream infinity and that p+ Is analytlc in the upper half plane.

With these conditions satisfied then we can obtain the least singular

solution by setting the remaining coefficients equal to zero. Hence, we

can rewrite equations (4.28) and (4.29) as

NI NI

V_(k,a) = (k - _)x_(k)(a + bk) -

I

IAIl (:a) IAIl (_a)x (_) x_(k)

2_(_- k) 2_X+(_)

AC(k - :)x_(k)

÷ [_ - kU(a)] (4.34)

and

P (k,a) =
+

I

i(k - _)x+(k) (:a) (:)x+(k)

k2 (a" + b'k) - AII x
2_X+(_)k 2

AIl(_a)xk2(k 2 - I/a 2)

2_k2(_ - k)[_ - kU(a)]

I

+IAC(k - _)x+(k) y_ (0)
÷ 2_r

[_ -kU(a)]k 2

(4.35)

The purpose of constructing an elgensolutlon to the problem was to

use it to eliminate the edge singularity in the noncausal particular

solution (eq. (3.80)). However by examining equations (3.80) and (4.34)

we see that the least singular elgensolutlon we were able to construct
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(consistent with the boundary conditions at upstream infinity) has a

higher order singularity than the particular solution equation (3.80).

If we try to removethe singularity in the particular solution by adding

thls eignsolutlon we will still be left with a singularity at the edge

of the duct and hence the resulting solution will still not satisfy the

Kutta condition (In fact it will not even exist ID the usual sense).

Evidently another elgnsolutlon must be added to relieve thls slngularlty.

4.4 The Kutta Condition

The difference between the causal and noncausal particular solution

must satlsy the differential equatlons (2.11) to (2.13) subJet to homo-

geneous boundary conditions, that is it must be an elgensolutlon. From
<

equatlons (3.17), (3.78), and (3.80)we can flnd thls elgensolutlon for

the upwash velocity to be

I

ve(x'a) = J= 2_x+(O) 1 + _ e -

I

+Pox+(=)
I

x+(O) Il(_a)x (_)

IcxX

I1(=a)e

(4.36)

If we rearrange equation (4.34) we can write It as

v (k,a) = (k - :)x (k)

IAI (=a)
l

2_(_ - k)

IAl I(:a)x' (_) x_(k)

+ (k -
:)x (k)

] AC(k - =)x (k)
_ AC + b'k +

[= - kU(a)]

(4.37)

Combining equations (4.8), (4.19), and (4.37), we can write the complete

elgensolutlon we have constructed as

47



_ -IAl (:a)x'(:)
vE(x,a) = 1

x_(k)_ (k -_:) + lI elkXdk + AIl(:a)e i:x

- - -- + (4.38)- _ [_ kU(a)]

The first two terms on the right in equatlpn (4.38) are equal, to

within a multlpllcatlve constant, to the elgensolutlon (4.36). The

remaining term then must by itself be an eigensolutlon with the same

level of singularity as the elgensolutlon we constructed in the last

section.

We write this elgensolutlon as

___ [_ N, AC ] IkxdvE(x,a) = (k - _) x_(k) - C + b k + [_ _ kU(a)] e k (4.39)

If we added the eigensolutlon (4.38) and subtracted (4.39) from the

noncausal particular solution we could eliminate all the singularities

by choosing the constant A correctly and we would of course arrive back

at the causal solution.

Naturally we cannot conclude from the discussion of this section

that all solutions which satisfy the edge condition are causal. However,

with the procedure used here, we were not able to construct any noncausal

solutions which satisfied the edge condltlon.

4.5 The Effect of the Mean Flow Profile on the roots of the Dispersion

Equation

Before closing this chapter we explore the effect of the mean flow

profile on the roots of the dispersion equation (eq. (4.13)). The inclu-

sion of the parameter b allows us to trace the evolution of these roots

as the mean profile goes from plug flow (b = O) to a Hagen-Polseville

parabolic profile (b = l).
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For the numerical computations we write equation (4.13) in dlmen-

slonless form as

I _I )_- 2_[_ _(I b)]b + _2(I _2)

l

[G - _(l - b)] 2 + ](x - - - = 0 (4.40)

Il(_) | B2
.J

Roots corresponding to the lowest instability modes were computed

over a range of Strouhal and Weber numbers. Figures 4.1 to 4.5 show the

development of these roots as b goes from 0 to 1. In these figures

Im x corresponds to the growth rate of a disturbance with wavenumber

Re x'.
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CHAPTER5

DISCUSSIONANDSUMMARY

Wehave examined the possibility of exciting capillary instabilities

in a circular liquid jet by forcing the flow from within the nozzle.

This is the so-called receptivity problem. A time harmonic axial pres-

sure gradient was imposedon the steady, parallel flow of a jet emanating

from a seml-lnflnlte circular duct.

Using a method developed in the study of plasma instabilities we

were able to construct a time harmonic causal solution to the forced

problem over certain ranges of the physical parameters. In order for

this time harmonic solution to be causal it must contain a term which

grows exponentially in the downstreamdirection, In other words _n _nsta-

billty wave. Hencecausality provides a mechanismby which externally

Imposed disturbances can couple to instability waves. In addition,

causality uniquely speclfle_s the amplltude of the instability wave

relative to that of the forcing and hence the "Coupling coefficient" is

determined. This "coupling coefficient" is a measureof the effective-

ness of the disturbance in generating instability waves. The analysis

of Chapter 3 yielded a formula for the coupling coefficient from which

numerical values were computedfor different comblnatlons of meanpro-

file, Webernumber, and Strouhal number.

In the process of constructing a causal solution we found a range

of Webernumbers (in particular Webernumbers less than around 5) for

which a time harmonic "steady-state" solution does not exist. For these

Webernumbersa disturbance will grow exponentially in time at every

point in space so that the concept of spatially growing waves is no

longer applicable. In this case the flow is said to be absolutely

unstable. Since we are interested in generating spatially growing waves
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we have restricted our attention to the range of Webernumberfor which

a "steady-state" solution exists and have not further pursued the case

of absolute instability.

In addition to the casual solution obtained by the method described

in the appendix a noncausal solution to the forced problem was found.

The noncausal solution had a delta function singularity at the trailing

edge of the duct. In order to obtain a solutlon which satisfies the

Kutta condition a constant multiple of an eigensolutlon, with the same

level edge singularity can be"added to the forced solution so that the
c

singularity is cancelled out.
t

In Chapter 4 we constructed an elgensoiutlon to the equations and

boundary conditions set down in Chapter 2. However, the least singular

elgensolutlon we were able to construct contained a higher order edge

slngularlty than the noncausal particular solution. Hence the sum of the

two still would not satisfy the Kutta condition. We were able to elimin-

ate all the singularities by appealing back to the solutions of Chap-

ter 3 but this inevitably led us back to the causal solution in order

satisfy the edge condition. That is to say we were not able to construct

any noncausal solution which satisfied the edge conditions.

In constructing the elgensolutlon in Chapter 4 we derived the dis-

persion relation for thestabillty problem Of the doubly infinite Jet for

the family of mean profiles glven by eq. (3.21). The lowest order root

in the fourth quadrant of the complex wave number plane was computed for

this family of profiles over a range of Weber and Strouhal numbers

extending• the results of Keller et al. (1973) who computed this root for

the plug flow profile (b = 0).
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5.2 Prospects for Further Research

The discovery that the liquid Jet can support absolute instabilities

was an unexpected result which deserves more attention. By a detailed

numerical investigation of the dispersion relation It would be possible

to pin down, for each mean profile, the range of Weber number for which

the absolute instabilities arise. It may even be possible to determine

this range analytically for the plug flow profile.

The effects of viscosity on the coupling coefficient and growth

rates of the instability waves_have not been considered in this work and

would make an interesting extension• of the results obtained here.
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APPENDIXA

A.I Introduction

In this appendix we will outline someof the theory behind the cri-

teria used in the main body of this work to ensure that causality is

satisfied and identify absolute instabilities. The mathematics was

worked out originally for the study of plasma instabilities. Wehave

used the results as derived by Brlggs (1964) and Bers (1972) and refer- •

ence will be madeto them for detailed proofs.

The method for obtaining a causal solutlon is based on the examina-

tion of an initial value problem where the forcing is "turned on', at some

initial time. The "steady state" solution will be the long time behavior

of the solution to this initial value problem provided that the flow is

not absolutely unstable.

A description of the method and a discussion of the issue of abso-

lute instability is given In the following two sections. Since we have

a specific example in the present 'problem we will use it to Illustrate

the ideas.

A.2 Method of Solution

Weconsider an initial value problem. At time t = 0 the flow in

the seml-lnflnlte Jet is subjected to a pulsating axial pressure gradi-

ent. The response of the flow to this forcing in space and time can be

determined by an inverse transform of the Greens functlon for this prob-

lem in the frequency and wave number planes as

g(x,t) = G(e,k) eIkx elet

L F

or as a function of frequency as

g(x,e) = _ G(e,k) e Ikx dk

F

dk de (Al)

(A2)
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This Greens' function will have poles at the zeros•of the dispersion

relat10n In the k and _ planes. The Inverslon contour in the fre-

quency plane must be a llne such that no zeros of the dispersion relation

(complex _ for real k) exist above it, since only then will the con-

dition of causality be satisfied (for t < 0 the integral is evaluated

by closing the contour in the upper half _ plane). The integration con-

tours in the k and _ planes are shownin figure A.l. Therefore, we

need to obtain the solution in the frequency plane along this contour L,

that is for the frequency having a sufficiently large positive imaginary

part.

Weare interested in the asymptotic response of the flow a long time

after the forcing was initiated. The asymptotic response can be obtained

by moving the contour In the _ plane as close as possible to the real

axis (since, in the absence of absolute instabilities the behavior of the

solution for large t Is determined by the pole of g nearest the real

axis in the _ plane). If we can movethe contour all the way to the

real axis, that is if we can analytically continue g to the real axis,

then the long tlme response will be due to a pQle on the real axis which

corresponds to the frequency of the forcing. In this case then a time

harmonic, "steady state" solution exists.

Nowthe poles in the k plane are related to _ through the dls-

persion relation, say A(k,_) = O. As we let _ approach the real

axis it may happen that certain poles In the k plane cross the

real k axis (in fact, if instability waves are to be generated by the

forcing thls must happen). If thls happened g(x,_) would not be ana-

lytic unless the contour in the k plane is deformed so as to continue

to include (or exclude) any poles which might be inclined to cross the

real axis as Im _ _ O. This is illustrated In figure A.2.
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The spatial response of the flow is obtained by closing the integra-

tion contour In the upper (lower) half k plane for x > (<) 0. Any

poles which crossed into the lower (upper) half plane as Im _ _ 0 (and

which remain inside the contour due to the deformation) correspond to

growing instability waves In the "steady-state" response (see eq. (A.2)).

In short then, to obtain a causal solution, we need to obtain the

transform of the solution to the initial value problem with the frequency

having a large positive imaginary part. Thls solution wlll appear form-

ally the sameas If we were seeking a tlme harmonic solution from the

start. Hencewe can proceed from the tlme harmonic form while keeping

In mind that the frequency has a large positive imaginary part. Wethen

let Im _ _ 0 and keep track of any poles In the k plane which cross

the real axls and in thls way obtain a causal solution for _ real.

A.3 Absolute Instabilities

It mayhappen that the analytic continuation just described cannot

be carried out all the way to the real _ axl_. Oneway thls could

occur Is If two roots In the k plane, one originating In the upper and

one In the lower half plane, merge for somecomplex _ wlth Im _ > 0.

As can be seen from figure A.3 the integration contour In the k plane

will become"pinched" between the two poles and the deformation on which

the analytic continuation rests cannot be perf_ormed. In these situations

(as shownby Brlggs and Bers) the asymptotic tlme response Is dominated

by a term which grows exponentially In tlme at every position In space

and the flow Is absolutely unstable.

Whenthese absolute Instab111tles are present there is no "steady-

state" and the concepts of spatial instability break down.
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